
Software Fault Avoidance

Goutam Kumar Saha

Senior Member IEEE

 gksaha@ieee.org

All software faults are basically design faults. Correct specification and correct
implementation are must in order to produce correct software. Software fault
avoidance aims to produce fault free software through various approaches

having the common objective of reducing the number of latent defects in
software programs. Software fault avoidance approaches include: formal or

precise specification practices, programming disciplines like information hiding
and encapsulation, extensive and repetitive reviews and formal analyses during
the development process, and of course, rigorous testing. In other words,

software fault avoidance approaches include verification & validation, software
testing, and proof methodology. Rigorous development process (standard

development processes, capability maturity model), strongly typed languages,
comprehensive standards, support tools and highly trained manpower and
formal methods are the key factors to software fault avoidance.

Formal methods are fault avoidance techniques that aim to increase

dependability by eliminating errors at the requirements specification and design
stages of development. Formal specifications use formal language with
mathematical semantics. Mathematical semantics make analysis related to

syntax checking, type checking possible. Formal specifications help in software
design, code refinement, and proof correctness by construction. Formal or semi-

formal specifications and programming are useful to show how the codes agree
to the specifications and they force us to program more simply and more clearly.

As a result, many defects are eliminated. Verification uncovers additional defects
and encourages careful examination of the program for efficiency and other
quality aspects.

Software testing aims to compensate for human fallibility and to unveil program

bugs. A test normally shows the presence of faults, not their absence. Bernstein
points out, “Typically, testing alone cannot fully verify that software is complete
and correct. In addition to testing, other verification techniques and a structured

and documented development process must be combined to assure a
comprehensive validation approach”. IBM’s Cleanroom Software Engineering

methods aim toward Zero-Defect Programming and these methods are also
applicable to three key areas of software development: software specification,
verification and testing.

Fault avoidance aims to prevent faults from occurring in the operational system.

It limits introduction of faults during system construction. It includes fault
prevention, fault removal, and fault forecasting. Fault prevention attempts to
eliminate any possibility of faults creeping into a system before it goes

operational. Fault removal attempts to find and remove the causes of errors.

Thus, fault avoidance helps to improve the quality of both the components and
the systems. Approaches for software fault avoidance include a set of methods

and techniques intended both to reduce the presence and to avoid the
introduction of faults (in number and severity). When designing dependable

systems we must deal with dependability issues from the beginning by
addressing fault-tolerance mechanisms within the system design and by
employing appropriate fault-avoidance approaches in the design process. Adding

dependability later on could be both expensive and might be not as effective as
designing it in from the beginning.

Issues in fault-avoidance research are inseparable from considerations of fault-
tolerance research. Primary objective of fault avoidance is to limit introduction of

faults during system construction. In other words, Fault avoidance technique
tries to reduce the probability of fault occurrence, while fault tolerance technique

tries to keep the system operational despite the presence of faults. Because
complete fault avoidance or elimination is not possible, a critical system always
employs fault tolerance techniques to guarantee high system reliability and

availability as fault tolerance tries to compensate for, and to protect against, the
impacts of faults during system operation. Though software does not deteriorate

(by itself) with use but often much more complex than hardware counter parts
and at the same time, it is virtually impossible to design fault free software.

We may think it as banana software approach, which ripens at the customer. For
real time system, software fault avoidance is not an option. We can improve

software by rigorous (if not formal) specification of requirements and by using
proven design methodologies along with the use of languages with data

abstraction & modularity. At the same time, we must use software engineering
environments in order to manage complexity.

Software fault tolerance methods include: exception handling, watchdog timers,
assertions, acceptability checks, reasonableness checks, design diversity, and

data diversity. Researchers agree that all software faults are design faults. Fault
elimination and fault prevention are parts of fault avoidance. Fault forecasting
includes a set of methods and techniques that intend to estimate the presence,

the creation, and the consequences of faults. Fault prevention attempts to
eliminate any possibility of faults creeping into a system before it goes

operational. Fault removal aims to find and remove the causes of errors. Fault
prevention can be attained by quality control techniques employed during the
design and manufacturing of hardware and software. They include structured

programming, information hiding, modularization, etc., for software, and
rigorous design rules for hardware. Shielding, radiation hardening etc, are useful

to prevent operational physical faults. Training, rigorous procedures for
maintenance, “foolproof” packages prevent interaction faults. Firewalls and
similar defenses prevent malicious faults.

We understand that fault avoidance, fault removal and fault tolerance represent

three successive lines of defense against the contingency of faults in software
systems and their impact on system reliability.

Software Fault Avoidance Rules: The following software fault avoidance rules, as
suggested by Lyu, should be followed regardless of the type of installed

software- structure: All requirements should be specified and analyzed with

formal methods, Specification- document should be debugged and stabilized
before the development of any components (for example by developing final

code prototypes), A protocol should exist in order to know and solve the
problems. This protocol should contain measures ensuring independence in

development and should not introduce correlated faults such as, e.g.,
communication errors, common lack of knowledge, or exchanges of erroneous
information among the various development teams, All the verification,

validation and the test (VVT) should be formalized and should show absence of
correlated faults, and All the specifications, design and the code should be tested

thoroughly. Lambert et al, [1993] points out, “In practice, the software
development process is error prone, i.e., software fault avoidance and software
fault removal methods are far from perfect. Development faults can be avoided

using formal methods (particularly methods with a mathematical basis) during
the various phases of the software life cycle. However, the application of

mathematical methods for a complete operational telecommunication system is
not feasible within the next five to ten years. It is expected however that most
faults can be avoided using specification languages and modeling and simulation

during the requirements and specification phases.

In spite of all formal specifications, testing and verification techniques of fault
avoidance approaches, we often observe that a system fails when hardware

components fail or environment changes or because of latent defects. In order to
avoid faults caused by environment changes or to avoid failure due to latent
defects, we need to employ robust design concepts along with the fault

avoidance methods while designing a dependable software system. We find that
fault avoidance approaches rarely treat various environmental and other faults.

It is also true that design for reliability is rarely taught to Computer Science
majors. Bernstein points out, “Software faults are common for the simple reason
that the complexity in modern systems is often pushed into the software part of

the system. Then the software is pushed to and beyond its limits. It is estimated
that 60-90% of current computer errors are from software faults. [Gray91]

Software faults may also be triggered from hardware; these faults are usually
transitory in nature, and can be masked using a combination of current software
and hardware fault tolerance techniques.”

As software fault tolerance is often measured in terms of system availability,

which is a function of reliability, we should include various single version (SV)
software- based approaches of fault tolerance for more effective software fault
avoidance in order to combat latent defects, environment and operational faults

for attaining higher system dependability. Software based approaches often rely
on either static redundancy or dynamic redundancy. By static redundancy, we

mean the redundancy inside a system for hiding effects of faults whereas, by
dynamic redundancy, we mean the redundancy supplied inside a module that
catches erroneous output or that provides an error detection facility along with

possibly an error recovery module. We also need voting modules. Voting is the
process to merge the outputs of redundant modules. Masking redundancy is also

useful for masking errors from application software. In masking redundancy, a
few processors run the same program and vote to identify errors in any single
processor. No software rollback is needed here to fix errors. We might use

software implemented fault tolerance (SIFT) or an approach to fault tolerant
multi-processor. Again, the algorithm-based fault tolerance (ABFT) approach

that refers to a self-contained method for detecting, locating, and correcting

errors with a software procedure, is also useful. The single version software-
based approaches include software implemented control flow error checking,

error masking, fault recovery, error detection and correction and so on by using
necessary replicated data or code, assertions, time or space redundancy etc.

Such techniques normally rely on enhanced single version programming (ESVP)
schemes that are based on single robust design only. ESVP is a low-cost solution.

Whereas, an N-version programming (NVP) scheme that relies on design
diversity is suitable for tolerating software design bugs. For higher system

dependability, we might go for a hybrid approach that relies on both the NVP
and ESVP approaches. In this hybrid approach, each software version of an NVP
application is based on an appropriate single version programming (SVP) or

ESVP scheme. Such hybrid software design approach would be a useful tool
toward better software fault avoidance and this technique aims designing a

system with high reliability.

Further Reading:

• Goutam Kumar Saha, “Software Based Fault Tolerance – a Survey,” ACM Ubiquity,

Vol. 7(25), July, 2006, ACM Press, USA.

URL: http://www.acm.org/ubiquity/views/v7i25_survey.html

• Goutam Kumar Saha, “Software Fault Avoidance Issues,” ACM Ubiquity, Vol.

7(46), November 2006, ACM Press, USA.
• Goutam Kumar Saha, “Control Flow Check – Based Fault Tolerant Computing,”

International Journal of Computing and Information Technology, Vol.3(1), 2011.
• Reliability, Maintainability, and Availability (RMA) Handbook, FAA-HDBK-006,

2006.

• Charles B. Weinstock, David P. Gluch, “A Perspective on the State of Research in

Fault -Tolerant Systems,” June 1997, CMU/SEI-97-SR-008.

• Philippe Charpentier, “Final Report of WP 1.2,” INRS, European Project STSARCES

Contract SMT 4CT97-2191.

• Jie Xu, Brian Randell, “Software Fault Tolerance: t l (n - 1)-Variant

Programming,” IEEE Transactions on Reliability, Vol. 46, No. 1, 1997 March.

• J. P. Bowen, V. Stavridou, “Formal Methods and Software Safety,” 1992.

• Allan M. Stavely, Toward Zero-Defect Programming, Addison Wesley Longman,

1999.

• Michael Huth and Mark Ryan, Logic in Computer Science: Modelling and

Reasoning about Systems, Cambridge University Press, 2000.

• P.P. Shirvani, E.J. McCluskey, “Fault-Tolerant Systems in a Space Environment:

The CRC ARGOS Project,” CRCTR 98-2, Stanford University, Stanford, CA, Dec.

1998.

• John C. Knight, “Software Fault,” (Lecture series), 2004.

• R.V. Hamxleden, “Achieving Dependability,” (Lecture series on Distributed Real –

Time Systems), 2001.

• Mili, B. Cukic, T. Xia, R. Ben Ayed, “Combining Fault Avoidance, Fault Removal

and Fault Tolerance: An Integrated Model.”

URL: http://ieeexplore.ieee.org/iel5/6516/17400/00802168.pdf

• Lambert J.M. Nieuwenhuis, Howard Sewberath Misser, Ian Hawker, Stephen S.

Donachie, Mauro Ravera and Stefan Balzaretti, “Reliability Engineering for Future

Telecommunication Networks and Services,” IEEE, 1993.

URL: ieeexplore.ieee.org/iel2/1047/7666/00318170.pdf?arnumber=318170

• Algirdas Aviz¡ienis, Jean-Claude Laprie and Brian Randell, “Fundamental

Concepts of Dependability,” Research Report N01145, LAAS-CNRS, April 2001.

• Larry Bernstein, “Software Fault Tolerance Forestalls Crashes: to Err is Human; to

Forgive is Fault Tolerant,” Advances in Computers, Vol. 58, Highly Dependable

Software, edited by Marvin Zelkowitz, Academic Press, ISBN 0-012-012158-1, pp.

240- 285, 2003.

• M. R. Lyu, Software Fault Tolerance, Chichester, England: John Wiley and Sons,

Inc., 1995.

• M. R. Lyu, Handbook of Software Fault Tolerance, ISBN 0-471-93784-3, 2000.

• E. M. Gray and R. H. Thayer, “Requirements in Aerospace Software Engineering,

A Collection of Concepts,” Ed. C. Anderson and M. Dorfman. Washington: AIAA,

1991.

• J.C. Laprie, “Dependable computing: concepts, limits, challenges,” In Proc. 25th

IEEE Int. Symp. Fault-Tolerant Computing - Special Issue, Pasadena, CA, 1995.

• Goutam Kumar Saha, “Software Implemented Fault Tolerance Through Data Error

Recovery,” ACM Ubiquity, Vol. 6(35), September 2005, ACM Press, USA. URL:

http://www.acm.org/ubiquity/views/v6i35_kumar.html

• Goutam Kumar Saha, “Software Based Fault Tolerant Computing,” ACM Ubiquity,

Vol. 6(40), November 2005, ACM Press, USA.

URL: http://www.acm.org/ubiquity/views/v6i40_saha.html

• Goutam Kumar Saha, "Low-Cost, Fault Tolerance Applications," IEEE Potentials,

Vol. 24(4), pp.35-39, 2005, IEEE Press, USA.

• Goutam Kumar Saha, "Software Based Fault Tolerant Array," IEEE Potentials, Vol.

25(1), pp.41-45, Jan-Feb, 2006, IEEE Press, USA.

• Goutam Kumar Saha, “Transient Fault Tolerance Through Algorithms,” IEEE

Potentials, Vol. 25(5), pp. 25-30, Sep-Oct 2006, IEEE Press, USA.

• Goutam Kumar Saha, "Software Implemented Fault Tolerance - The ESVP

Approach," ACM Ubiquity, Vol. 7 (31), August 2006, ACM Press, USA. URL:

http://www.acm.org/ubiquity/views/pf/v7i31_esvp.pdf

• R.V. Hanxleden, “WS 2001/02 – Distributed Real-Time Systems- Approaches to

Achieving Reliable Systems,” Lecture-15, 2001.

• F. R. Harnden, F.A. Primini, H.E. Payne eds. “Software Fault Tolerance for Low –

to – Moderate Radiation Environments,” Proc. Astronomical Data Analysis

Software and Systems, Vol.238, 2001.

